Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can We Faithfully Represent Masked States to Compute Shapley Values on a DNN? (2105.10719v4)

Published 22 May 2021 in cs.LG and cs.AI

Abstract: Masking some input variables of a deep neural network (DNN) and computing output changes on the masked input sample represent a typical way to compute attributions of input variables in the sample. People usually mask an input variable using its baseline value. However, there is no theory to examine whether baseline value faithfully represents the absence of an input variable, \emph{i.e.,} removing all signals from the input variable. Fortunately, recent studies show that the inference score of a DNN can be strictly disentangled into a set of causal patterns (or concepts) encoded by the DNN. Therefore, we propose to use causal patterns to examine the faithfulness of baseline values. More crucially, it is proven that causal patterns can be explained as the elementary rationale of the Shapley value. Furthermore, we propose a method to learn optimal baseline values, and experimental results have demonstrated its effectiveness.

Citations (7)

Summary

We haven't generated a summary for this paper yet.