Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

Privacy Amplification Via Bernoulli Sampling (2105.10594v2)

Published 21 May 2021 in cs.LG, cs.CR, cs.IT, and math.IT

Abstract: Balancing privacy and accuracy is a major challenge in designing differentially private machine learning algorithms. One way to improve this tradeoff for free is to leverage the noise in common data operations that already use randomness. Such operations include noisy SGD and data subsampling. The additional noise in these operations may amplify the privacy guarantee of the overall algorithm, a phenomenon known as privacy amplification. In this paper, we analyze the privacy amplification of sampling from a multidimensional Bernoulli distribution family given the parameter from a private algorithm. This setup has applications to Bayesian inference and to data compression. We provide an algorithm to compute the amplification factor, and we establish upper and lower bounds on this factor.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.