Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Hash Code Generation for Cancelable Fingerprint Templates using Vector Permutation and Shift-order Process (2105.10227v1)

Published 21 May 2021 in cs.CR and cs.CV

Abstract: Cancelable biometric techniques have been used to prevent the compromise of biometric data by generating and using their corresponding cancelable templates for user authentication. However, the non-invertible distance preserving transformation methods employed in various schemes are often vulnerable to information leakage since matching is performed in the transformed domain. In this paper, we propose a non-invertible distance preserving scheme based on vector permutation and shift-order process. First, the dimension of feature vectors is reduced using kernelized principle component analysis (KPCA) prior to randomly permuting the extracted vector features. A shift-order process is then applied to the generated features in order to achieve non-invertibility and combat similarity-based attacks. The generated hash codes are resilient to different security and privacy attacks whilst fulfilling the major revocability and unlinkability requirements. Experimental evaluation conducted on 6 datasets of FVC2002 and FVC2004 reveals a high-performance accuracy of the proposed scheme better than other existing state-of-the-art schemes.

Summary

We haven't generated a summary for this paper yet.