Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study of Vehicle Re-Identification on the AI City Challenge (2105.09701v1)

Published 20 May 2021 in cs.CV

Abstract: This paper introduces our solution for the Track2 in AI City Challenge 2021 (AICITY21). The Track2 is a vehicle re-identification (ReID) task with both the real-world data and synthetic data. We mainly focus on four points, i.e. training data, unsupervised domain-adaptive (UDA) training, post-processing, model ensembling in this challenge. (1) Both cropping training data and using synthetic data can help the model learn more discriminative features. (2) Since there is a new scenario in the test set that dose not appear in the training set, UDA methods perform well in the challenge. (3) Post-processing techniques including re-ranking, image-to-track retrieval, inter-camera fusion, etc, significantly improve final performance. (4) We ensemble CNN-based models and transformer-based models which provide different representation diversity. With aforementioned techniques, our method finally achieves 0.7445 mAP score, yielding the first place in the competition. Codes are available at https://github.com/michuanhaohao/AICITY2021_Track2_DMT.

Citations (22)

Summary

We haven't generated a summary for this paper yet.