Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Data Compression in Column-Stores (2105.09058v1)

Published 19 May 2021 in cs.DB, cs.DC, and cs.PF

Abstract: Data compression is widely used in contemporary column-oriented DBMSes to lower space usage and to speed up query processing. Pioneering systems have introduced compression to tackle the disk bandwidth bottleneck by trading CPU processing power for it. The main issue of this is a trade-off between the compression ratio and the decompression CPU cost. Existing results state that light-weight compression with small decompression costs outperforms heavy-weight compression schemes in column-stores. However, since the time these results were obtained, CPU, RAM, and disk performance have advanced considerably. Moreover, novel compression algorithms have emerged. In this paper, we revisit the problem of compression in disk-based column-stores. More precisely, we study the I/O-RAM compression scheme which implies that there are two types of pages of different size: disk pages (compressed) and in-memory pages (uncompressed). In this scheme, the buffer manager is responsible for decompressing pages as soon as they arrive from disk. This scheme is rather popular as it is easy to implement: several modern column and row-stores use it. We pose and address the following research questions: 1) Are heavy-weight compression schemes still inappropriate for disk-based column-stores?, 2) Are new light-weight compression algorithms better than the old ones?, 3) Is there a need for SIMD-employing decompression algorithms in case of a disk-based system? We study these questions experimentally using a columnar query engine and Star Schema Benchmark.

Citations (2)

Summary

We haven't generated a summary for this paper yet.