Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursion formulas for integrated products of Jacobi polynomials (2105.08989v1)

Published 19 May 2021 in math.NA, cs.NA, and cs.SC

Abstract: From the literature it is known that orthogonal polynomials as the Jacobi polynomials can be expressed by hypergeometric series. In this paper, the authors derive several contiguous relations for terminating multivariate hypergeometric series. With these contiguous relations one can prove several recursion formulas of those series. This theoretical result allows to compute integrals over products of Jacobi polynomials in a very efficient recursive way. Moreover, the authors present an application to numerical analysis where it can be used in algorithms which compute the approximate solution of boundary value problem of partial differential equations by means of the finite elements method (FEM). With the aid of the contiguous relations, the approximate solution can be computed much faster than using numerical integration. A numerical example illustrates this effect.

Citations (2)

Summary

We haven't generated a summary for this paper yet.