Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VSGM -- Enhance robot task understanding ability through visual semantic graph (2105.08959v2)

Published 19 May 2021 in cs.RO, cs.AI, and cs.CV

Abstract: In recent years, developing AI for robotics has raised much attention. The interaction of vision and language of robots is particularly difficult. We consider that giving robots an understanding of visual semantics and language semantics will improve inference ability. In this paper, we propose a novel method-VSGM (Visual Semantic Graph Memory), which uses the semantic graph to obtain better visual image features, improve the robot's visual understanding ability. By providing prior knowledge of the robot and detecting the objects in the image, it predicts the correlation between the attributes of the object and the objects and converts them into a graph-based representation; and mapping the object in the image to be a top-down egocentric map. Finally, the important object features of the current task are extracted by Graph Neural Networks. The method proposed in this paper is verified in the ALFRED (Action Learning From Realistic Environments and Directives) dataset. In this dataset, the robot needs to perform daily indoor household tasks following the required language instructions. After the model is added to the VSGM, the task success rate can be improved by 6~10%.

Summary

We haven't generated a summary for this paper yet.