Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The BDF2-Maruyama Scheme for Stochastic Evolution Equations with Monotone Drift (2105.08767v1)

Published 18 May 2021 in math.NA and cs.NA

Abstract: We study the numerical approximation of stochastic evolution equations with a monotone drift driven by an infinite-dimensional Wiener process. To discretize the equation, we combine a drift-implicit two-step BDF method for the temporal discretization with an abstract Galerkin method for the spatial discretization. After proving well-posedness of the BDF2-Maruyama scheme, we establish a convergence rate of the strong error for equations under suitable Lipschitz conditions. We illustrate our theoretical results through various numerical experiments and compare the performance of the BDF2-Maruyama scheme to the backward Euler--Maruyama scheme.

Citations (2)

Summary

We haven't generated a summary for this paper yet.