Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classifying sufficiently connected PSC manifolds in $4$ and $5$ dimensions (2105.07306v3)

Published 15 May 2021 in math.DG, math.GT, and math.MG

Abstract: We show that if $N$ is a closed manifold of dimension $n=4$ (resp. $n=5$) with $\pi_2(N) = 0$ (resp. $\pi_2(N)=\pi_3(N)=0$) that admits a metric of positive scalar curvature, then a finite cover $\hat N$ of $N$ is homotopy equivalent to $Sn$ or connected sums of $S{n-1}\times S1$. Our approach combines recent advances in the study of positive scalar curvature with a novel argument of Alpert--Balitskiy--Guth. Additionally, we prove a more general mapping version of this result. In particular, this implies that if $N$ is a closed manifold of dimensions $4$ or $5$, and $N$ admits a map of nonzero degree to a closed aspherical manifold, then $N$ does not admit any Riemannian metric with positive scalar curvature.

Summary

We haven't generated a summary for this paper yet.