Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Saddle point preconditioners for weak-constraint 4D-Var (2105.06975v5)

Published 14 May 2021 in math.NA and cs.NA

Abstract: Data assimilation algorithms combine information from observations and prior model information to obtain the most likely state of a dynamical system. The linearised weak-constraint four-dimensional variational assimilation problem can be reformulated as a saddle point problem, which admits more scope for preconditioners than the primal form. In this paper we design new terms which can be used within existing preconditioners, such as block diagonal and constraint-type preconditioners. Our novel preconditioning approaches: (i) incorporate model information, and (ii) are designed to target correlated observation error covariance matrices. To our knowledge (i) has not previously been considered for data assimilation problems. We develop new theory demonstrating the effectiveness of the new preconditioners within Krylov subspace methods. Linear and non-linear numerical experiments reveal that our new approach leads to faster convergence than existing state-of-the-art preconditioners for a broader range of problems than indicated by the theory alone. We present a range of numerical experiments performed in serial.

Citations (3)

Summary

We haven't generated a summary for this paper yet.