Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical Isometry: The Missing Ingredient for Neural Network Pruning (2105.05916v1)

Published 12 May 2021 in cs.LG, cs.AI, cs.CV, and cs.NE

Abstract: Several recent works [40, 24] observed an interesting phenomenon in neural network pruning: A larger finetuning learning rate can improve the final performance significantly. Unfortunately, the reason behind it remains elusive up to date. This paper is meant to explain it through the lens of dynamical isometry [42]. Specifically, we examine neural network pruning from an unusual perspective: pruning as initialization for finetuning, and ask whether the inherited weights serve as a good initialization for the finetuning? The insights from dynamical isometry suggest a negative answer. Despite its critical role, this issue has not been well-recognized by the community so far. In this paper, we will show the understanding of this problem is very important -- on top of explaining the aforementioned mystery about the larger finetuning rate, it also unveils the mystery about the value of pruning [5, 30]. Besides a clearer theoretical understanding of pruning, resolving the problem can also bring us considerable performance benefits in practice.

Citations (4)

Summary

We haven't generated a summary for this paper yet.