Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instability of all regular stationary solutions to reaction-diffusion-ODE systems (2105.05023v2)

Published 11 May 2021 in math.AP

Abstract: A general system of several ordinary differential equations coupled with a reaction-diffusion equation in a bounded domain with zero-flux boundary condition is studied in the context of pattern formation. These initial-boundary value problems may have regular (i.e. sufficiently smooth) stationary solutions. This class of {\it close-to-equilibrium} patterns includes stationary solutions that emerge due to the Turing instability of a spatially constant stationary solution. The main result of this work is instability of all regular patterns. It suggests that stable stationary solutions arising in models with non-diffusive components must be {\it far-from-equilibrium} exhibiting singularities. Such discontinuous stationary solutions have been considered in our parallel work [\textit{Stable discontinuous stationary solutions to reaction-diffusion-ODE systems}, preprint (2021)].

Summary

We haven't generated a summary for this paper yet.