Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rationalization through Concepts (2105.04837v1)

Published 11 May 2021 in cs.CL and cs.LG

Abstract: Automated predictions require explanations to be interpretable by humans. One type of explanation is a rationale, i.e., a selection of input features such as relevant text snippets from which the model computes the outcome. However, a single overall selection does not provide a complete explanation, e.g., weighing several aspects for decisions. To this end, we present a novel self-interpretable model called ConRAT. Inspired by how human explanations for high-level decisions are often based on key concepts, ConRAT extracts a set of text snippets as concepts and infers which ones are described in the document. Then, it explains the outcome with a linear aggregation of concepts. Two regularizers drive ConRAT to build interpretable concepts. In addition, we propose two techniques to boost the rationale and predictive performance further. Experiments on both single- and multi-aspect sentiment classification tasks show that ConRAT is the first to generate concepts that align with human rationalization while using only the overall label. Further, it outperforms state-of-the-art methods trained on each aspect label independently.

Citations (18)

Summary

We haven't generated a summary for this paper yet.