Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Policy Transfer in Reinforcement Learning (2105.04699v1)

Published 10 May 2021 in cs.LG and cs.AI

Abstract: Efficient and robust policy transfer remains a key challenge for reinforcement learning to become viable for real-wold robotics. Policy transfer through warm initialization, imitation, or interacting over a large set of agents with randomized instances, have been commonly applied to solve a variety of Reinforcement Learning tasks. However, this seems far from how skill transfer happens in the biological world: Humans and animals are able to quickly adapt the learned behaviors between similar tasks and learn new skills when presented with new situations. Here we seek to answer the question: Will learning to combine adaptation and exploration lead to a more efficient transfer of policies between domains? We introduce a principled mechanism that can "Adapt-to-Learn", that is adapt the source policy to learn to solve a target task with significant transition differences and uncertainties. We show that the presented method learns to seamlessly combine learning from adaptation and exploration and leads to a robust policy transfer algorithm with significantly reduced sample complexity in transferring skills between related tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.