Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An end-to-end Optical Character Recognition approach for ultra-low-resolution printed text images (2105.04515v1)

Published 10 May 2021 in cs.CV

Abstract: Some historical and more recent printed documents have been scanned or stored at very low resolutions, such as 60 dpi. Though such scans are relatively easy for humans to read, they still present significant challenges for optical character recognition (OCR) systems. The current state-of-the art is to use super-resolution to reconstruct an approximation of the original high-resolution image and to feed this into a standard OCR system. Our novel end-to-end method bypasses the super-resolution step and produces better OCR results. This approach is inspired from our understanding of the human visual system, and builds on established neural networks for performing OCR. Our experiments have shown that it is possible to perform OCR on 60 dpi scanned images of English text, which is a significantly lower resolution than the state-of-the-art, and we achieved a mean character level accuracy (CLA) of 99.7% and word level accuracy (WLA) of 98.9% across a set of about 1000 pages of 60 dpi text in a wide range of fonts. For 75 dpi images, the mean CLA was 99.9% and the mean WLA was 99.4% on the same sample of texts. We make our code and data (including a set of low-resolution images with their ground truths) publicly available as a benchmark for future work in this field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (4)

Summary

We haven't generated a summary for this paper yet.