Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Grounding with Transformers (2105.04281v3)

Published 10 May 2021 in cs.CV

Abstract: In this paper, we propose a transformer based approach for visual grounding. Unlike previous proposal-and-rank frameworks that rely heavily on pretrained object detectors or proposal-free frameworks that upgrade an off-the-shelf one-stage detector by fusing textual embeddings, our approach is built on top of a transformer encoder-decoder and is independent of any pretrained detectors or word embedding models. Termed VGTR -- Visual Grounding with TRansformers, our approach is designed to learn semantic-discriminative visual features under the guidance of the textual description without harming their location ability. This information flow enables our VGTR to have a strong capability in capturing context-level semantics of both vision and language modalities, rendering us to aggregate accurate visual clues implied by the description to locate the interested object instance. Experiments show that our method outperforms state-of-the-art proposal-free approaches by a considerable margin on five benchmarks while maintaining fast inference speed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ye Du (15 papers)
  2. Zehua Fu (13 papers)
  3. Qingjie Liu (64 papers)
  4. Yunhong Wang (115 papers)
Citations (61)