Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic forecast of multiphase transport under viscous and buoyancy forces in heterogeneous porous media (2105.03988v1)

Published 9 May 2021 in physics.comp-ph, cs.NA, math.AP, math.NA, and math.PR

Abstract: In this study, we develop a probabilistic approach to map the parametric uncertainty to the output state uncertainty in first-order hyperbolic conservation laws. We analyze this problem for nonlinear immiscible two-phase transport in heterogeneous porous media in the presence of a stochastic velocity field. The uncertainty in the velocity field can arise from the incomplete description of either porosity field, injection flux, or both. The uncertainty in the total-velocity field leads to the spatiotemporal uncertainty in the saturation field. Given information about the spatial/temporal statistics of the correlated heterogeneity, we leverage method of distributions to derive deterministic equations that govern the evolution of single-point CDF of saturation. Unlike Buckley Leverett equation, the equation for the raw CDF function is linear in space and time. Hereby, we give routes to circumventing the computational cost of Monte Carlo scheme while obtaining the full statistical description of saturation. We conduct a set of numerical experiments and compare statistics of saturation computed with the method of distributions, against those obtained using the statistical moment equations approach and kernel density estimation post-processing of high-resolution Monte Carlo simulations. This comparison demonstrates that the CDF equations remain accurate over a wide range of statistical properties, i.e. standard deviation and correlation length of the underlying random fields, while the corresponding low-order statistical moment equations significantly deviate from Monte Carlo results, unless for very small values of standard deviation and correlation length.

Summary

We haven't generated a summary for this paper yet.