Parametric binomial sums involving harmonic numbers (2105.03927v1)
Abstract: We present explicit formulas for the following family of parametric binomial sums involving harmonic numbers for $p=0,1,2$ and $|t|\leq1$. $$ \sum_{k=1}{\infty}\frac{H_{k-1}tk}{kp\binom{n+k}{k}}\quad \mbox{and}\quad \sum_{k=1}{\infty}\frac{tk}{kp\binom{n+k}{k}}. $$ We also generalize the following relation between the Stirling numbers of the first kind and the Riemann zeta function to polygamma function and give some applications. $$ \zeta(n+1)=\sum_{k=n}{\infty}\frac{s(k,n)}{kk!}, \quad n=1,2,3,... . $$ As examples, \begin{equation*} \zeta(3)=\frac{1}{7}\sum_{k=1}{\infty}\frac{H_{k-1}4k}{k2\binom{2k}{k}},\quad \mbox{and}\quad \zeta(3)=\frac{8}{7}+\frac{1}{7}\sum_{k=1}{\infty}\frac{H_{k-1}4k}{k2(2k+1)\binom{2k}{k}}, \end{equation*} which are new series representations for the Ap\'{e}ry constant $\zeta(3)$.