Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning stochastic decision trees (2105.03594v1)

Published 8 May 2021 in cs.LG, cs.DS, and stat.ML

Abstract: We give a quasipolynomial-time algorithm for learning stochastic decision trees that is optimally resilient to adversarial noise. Given an $\eta$-corrupted set of uniform random samples labeled by a size-$s$ stochastic decision tree, our algorithm runs in time $n{O(\log(s/\varepsilon)/\varepsilon2)}$ and returns a hypothesis with error within an additive $2\eta + \varepsilon$ of the Bayes optimal. An additive $2\eta$ is the information-theoretic minimum. Previously no non-trivial algorithm with a guarantee of $O(\eta) + \varepsilon$ was known, even for weaker noise models. Our algorithm is furthermore proper, returning a hypothesis that is itself a decision tree; previously no such algorithm was known even in the noiseless setting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.