Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Activity-Aware Deep Cognitive Fatigue Assessment using Wearables (2105.02824v1)

Published 5 May 2021 in eess.SP, cs.LG, and cs.MM

Abstract: Cognitive fatigue has been a common problem among workers which has become an increasing global problem since the emergence of COVID-19 as a global pandemic. While existing multi-modal wearable sensors-aided automatic cognitive fatigue monitoring tools have focused on physical and physiological sensors (ECG, PPG, Actigraphy) analytic on specific group of people (say gamers, athletes, construction workers), activity-awareness is utmost importance due to its different responses on physiology in different person. In this paper, we propose a novel framework, Activity-Aware Recurrent Neural Network (\emph{AcRoNN}), that can generalize individual activity recognition and improve cognitive fatigue estimation significantly. We evaluate and compare our proposed method with state-of-art methods using one real-time collected dataset from 5 individuals and another publicly available dataset from 27 individuals achieving max. 19% improvement.

Citations (4)

Summary

We haven't generated a summary for this paper yet.