Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Spatial and Temporal Order of Convergence of Hyperbolic PDEs (2105.01822v2)

Published 5 May 2021 in math.NA and cs.NA

Abstract: In this work, we determine the full expression for the global truncation error of hyperbolic partial differential equations (PDEs). In particular, we use theoretical analysis and symbolic algebra to find exact expressions for the coefficients of the generic global truncation error. Our analysis is valid for any hyperbolic PDE, be it linear or non-linear, and employing finite difference, finite volume, or finite element discretization in space, and advanced in time with a predictor-corrector, multistep, or a deferred correction method, belonging to the Method of Lines. Furthermore, we discuss the practical implications of this analysis. If we employ a stable numerical scheme and the orders of accuracy of the global solution error and the global truncation error agree, we make the following asymptotic observations: (a) the order of convergence at constant ratio of $\Delta t$ to $\Delta x$ is governed by the minimum of the orders of the spatial and temporal discretizations, and (b) convergence cannot even be guaranteed under only spatial or temporal refinement. An implication of (a) is that it is impractical to invest in a time-stepping method of order higher than the spatial discretization. In addition to (b), we demonstrate that under certain circumstances, the error can even monotonically increase with refinement only in space or only in time, and explain why this phenomenon occurs. To verify our theoretical findings, we conduct convergence studies of linear and non-linear advection equations using finite difference and finite volume spatial discretizations, and predictor-corrector and multistep time-stepping methods. Finally, we study the effect of slope limiters and monotonicity-preserving strategies on the order of accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.