Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Complexity and Generalization Bounds (2105.01747v2)

Published 4 May 2021 in cs.LG, cs.IT, and math.IT

Abstract: We present a unifying picture of PAC-Bayesian and mutual information-based upper bounds on the generalization error of randomized learning algorithms. As we show, Tong Zhang's information exponential inequality (IEI) gives a general recipe for constructing bounds of both flavors. We show that several important results in the literature can be obtained as simple corollaries of the IEI under different assumptions on the loss function. Moreover, we obtain new bounds for data-dependent priors and unbounded loss functions. Optimizing the bounds gives rise to variants of the Gibbs algorithm, for which we discuss two practical examples for learning with neural networks, namely, Entropy- and PAC-Bayes- SGD. Further, we use an Occam's factor argument to show a PAC-Bayesian bound that incorporates second-order curvature information of the training loss.

Citations (13)

Summary

We haven't generated a summary for this paper yet.