Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Playing Stochastically in Weighted Timed Games to Emulate Memory (2105.00984v6)

Published 3 May 2021 in cs.GT

Abstract: Weighted timed games are two-player zero-sum games played in a timed automaton equipped with integer weights. We consider optimal reachability objectives, in which one of the players, that we call Min, wants to reach a target location while minimising the cumulated weight. While knowing if Min has a strategy to guarantee a value lower than a given threshold is known to be undecidable (with two or more clocks), several conditions, one of them being divergence, have been given to recover decidability. In such weighted timed games (like in untimed weighted games in the presence of negative weights), Min may need finite memory to play (close to) optimally. This is thus tempting to try to emulate this finite memory with other strategic capabilities. In this work, we allow the players to use stochastic decisions, both in the choice of transitions and of timing delays. We give a definition of the expected value in weighted timed games. We then show that, in divergent weighted timed games as well as in (untimed) weighted games (that we call shortest-path games in the following), the stochastic value is indeed equal to the classical (deterministic) value, thus proving that Min can guarantee the same value while only using stochastic choices, and no memory.

Citations (4)

Summary

We haven't generated a summary for this paper yet.