Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Detect opinion-based groups and reveal polarisation in survey data (2104.14427v4)

Published 29 Apr 2021 in physics.soc-ph

Abstract: Networks, representing attitudinal survey data, expose the structure of opinion-based groups. We make use of these network projections to identify the groups reliably through community detection algorithms and to examine social-identity-based groups. Our goal is to present a method for revealing polarisation and opinion-based in attitudinal surveys. This method can be broken down into the following steps: data preparation, construction of similarity-based networks, algorithmic identification of opinion-based groups, and identification of important items for community structure. We assess the method's performance and possible scope for applying it to empirical data and to a broad range of synthetic data sets. The empirical data application points out possible conclusions (i.e. social-identity polarisation), whereas the synthetic data sets mark out the method's boundaries. Next to an application example on political attitude survey, our results suggest that the method works for various surveys but is also moderated by the efficacy of the community detection algorithms. Concerning the identification of opinion-based groups, we provide a solid method to rank the item's influence on group formation and as a group identifier. We discuss how this network approach for identifying polarisation can classify non-overlapping opinion-based groups even in the absence of extreme opinions.

Summary

We haven't generated a summary for this paper yet.