Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Batalin-Vilkovisky algebra structure on Poisson manifolds with diagonalizable modular symmetry (2104.14099v4)

Published 29 Apr 2021 in math.DG, math-ph, and math.MP

Abstract: We study the ``twisted" Poincar\'e duality of smooth Poisson manifolds, and show that, if the modular vector field is diagonalizable, then there is a mixed complex associated to the Poisson complex, which, combining with the twisted Poincar\'e duality, gives a Batalin-Vilkovisky algebra structure on the Poisson cohomology. This generalizes the previous results obtained by Xu for unimodular Poisson manifolds. We also show that the Batalin-Vilkovisky algebra structure is preserved under Kontsevich's deformation quantization, and in the case of polynomial algebras it is also preserved by Koszul duality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.