Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Best approximations to compact operators (2104.13975v1)

Published 28 Apr 2021 in math.FA

Abstract: We study best approximations to compact operators between Banach spaces and Hilbert spaces, from the point of view of Birkhoff-James orthogonality and semi-inner-products. As an application of the present study, some distance formulae are presented in the space of compact operators. The special case of bounded linear functionals as compact operators is treated separately and some applications to best approximations in reflexive, strictly convex and smooth Banach spaces are discussed. An explicit example is presented in $ \ell_p{n} $ spaces, where $ 1 < p < \infty, $ to illustrate the applicability of the methods developed in this article. A comparative analysis of the results presented in this article with the well-known classical duality principle in approximation theory is conducted to demonstrate the advantage in the former case, from a computational point of view.

Summary

We haven't generated a summary for this paper yet.