Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inpainting Transformer for Anomaly Detection (2104.13897v3)

Published 28 Apr 2021 in cs.CV

Abstract: Anomaly detection in computer vision is the task of identifying images which deviate from a set of normal images. A common approach is to train deep convolutional autoencoders to inpaint covered parts of an image and compare the output with the original image. By training on anomaly-free samples only, the model is assumed to not being able to reconstruct anomalous regions properly. For anomaly detection by inpainting we suggest it to be beneficial to incorporate information from potentially distant regions. In particular we pose anomaly detection as a patch-inpainting problem and propose to solve it with a purely self-attention based approach discarding convolutions. The proposed Inpainting Transformer (InTra) is trained to inpaint covered patches in a large sequence of image patches, thereby integrating information across large regions of the input image. When training from scratch, in comparison to other methods not using extra training data, InTra achieves results on par with the current state-of-the-art on the MVTec AD dataset for detection and surpassing them on segmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jonathan Pirnay (7 papers)
  2. Keng Chai (1 paper)
Citations (146)

Summary

We haven't generated a summary for this paper yet.