Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolution of nonlinear reduced-order solutions for PDEs with conserved quantities (2104.13515v2)

Published 28 Apr 2021 in math.AP, math.DS, and physics.comp-ph

Abstract: Reduced-order models of time-dependent partial differential equations (PDEs) where the solution is assumed as a linear combination of prescribed modes are rooted in a well-developed theory. However, more general models where the reduced solutions depend nonlinearly on time varying parameters have thus far been derived in an ad hoc manner. Here, we introduce Reduced-order Nonlinear Solutions (RONS): a unified framework for deriving reduced-order models that depend nonlinearly on a set of time-dependent parameters. The set of all possible reduced-order solutions are viewed as a manifold immersed in the function space of the PDE. The parameters are evolved such that the instantaneous discrepancy between reduced dynamics and the full PDE dynamics is minimized. This results in a set of explicit ordinary differential equations on the tangent bundle of the manifold. In the special case of linear parameter dependence, our reduced equations coincide with the standard Galerkin projection. Furthermore, any number of conserved quantities of the PDE can readily be enforced in our framework. Since RONS does not assume an underlying variational formulation for the PDE, it is applicable to a broad class of problems. We demonstrate the efficacy of RONS on three examples: an advection-diffusion equation, the nonlinear Schrodinger equation and Euler's equation for ideal fluids.

Citations (24)

Summary

We haven't generated a summary for this paper yet.