Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gross-Neveu-Heisenberg criticality from competing nematic and antiferromagnetic orders in bilayer graphene (2104.12779v2)

Published 26 Apr 2021 in cond-mat.str-el, cond-mat.mes-hall, and hep-th

Abstract: We study the phase diagram of an effective model of competing nematic and antiferromagnetic orders of interacting electrons on the Bernal-stacked honeycomb bilayer, as relevant for bilayer graphene. In the noninteracting limit, the model features a semimetallic ground state with quadratic band touching points at the Fermi level. Taking the effects of short-range interactions into account, we demonstrate the existence of an extended region in the mean-field phase diagram characterized by coexisting nematic and antiferromagnetic orders. By means of a renormalization group approach, we reveal that the quantum phase transition from nematic to coexistent nematic-antiferromagnetic orders is continuous and characterized by emergent Lorentz symmetry. It falls into the $(2+1)$-dimensional relativistic Gross-Neveu-Heisenberg quantum universality class, which has recently been much investigated in the context of interacting Dirac systems in two spatial dimensions. The coexistence-to-antiferromagnetic transition, by contrast, turns out to be weakly first order as a consequence of the absence of continuous spatial rotational symmetry on the honeycomb bilayer. Implications for experiments in bilayer graphene are discussed.

Citations (5)

Summary

We haven't generated a summary for this paper yet.