Emergence of linear isotropic elasticity in amorphous and polycrystalline materials (2104.12383v1)
Abstract: We investigate the emergence of isotropic linear elasticity in amorphous and polycrystalline solids, via extensive numerical simulations. We show that the elastic properties are correlated over a finite length scale $\xi_E$, so that the central limit theorem dictates the emergence of continuum linear isotropic elasticity on increasing the specimen size. The stiffness matrix of systems of finite size $L > \xi_E$ is obtained adding to that predicted by linear isotropic elasticity a random one of spectral norm $(L/\xi_E){-3/2}$, in three spatial dimensions. We further demonstrate that the elastic length scale corresponds to that of structural correlations, which in polycrystals reflect the typical size of the grain boundaries and length scales characterizing correlations in the stress field. We finally demonstrate that the elastic length scale affects the decay of the anisotropic long-ranged correlations of locally defined shear modulus and shear stress.