Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accuracy Improvement for Fully Convolutional Networks via Selective Augmentation with Applications to Electrocardiogram Data (2104.12284v2)

Published 25 Apr 2021 in eess.SP and cs.LG

Abstract: Deep learning methods have shown suitability for time series classification in the health and medical domain, with promising results for electrocardiogram data classification. Successful identification of myocardial infarction holds life saving potential and any meaningful improvement upon deep learning models in this area is of great interest. Conventionally, data augmentation methods are applied universally to the training set when data are limited in order to ameliorate data resolution or sample size. In the method proposed in this study, data augmentation was not applied in the context of data scarcity. Instead, samples that yield low confidence predictions were selectively augmented in order to bolster the model's sensitivity to features or patterns less strongly associated with a given class. This approach was tested for improving the performance of a Fully Convolutional Network. The proposed approach achieved 90 percent accuracy for classifying myocardial infarction as opposed to 82 percent accuracy for the baseline, a marked improvement. Further, the accuracy of the proposed approach was optimal near a defined upper threshold for qualifying low confidence samples and decreased as this threshold was raised to include higher confidence samples. This suggests exclusively selecting lower confidence samples for data augmentation comes with distinct benefits for electrocardiogram data classification with Fully Convolutional Networks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.