Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a theorem of Nosal (2104.12171v1)

Published 25 Apr 2021 in math.CO

Abstract: Let $G$ be a graph with $m$ edges and spectral radius $\lambda_{1}$. Let $bk\left( G\right) $ stand for the maximal number of triangles with a common edge in $G$. In 1970 Nosal proved that if $\lambda_{1}{2}>m,$ then $G$ contains a triangle. In this paper we show that the same premise implies that [ bk\left( G\right) >\frac{1}{12}\sqrt[4]{m}. ] This result settles a conjecture of Zhai, Lin, and Shu. Write $\lambda_{2}$ for the second largest eigenvalue of $G$. Recently, Lin, Ning, and Wu showed that if $G$ is a triangle-free graph of order at least three, then [ \lambda_{1}{2}+\lambda_{2}{2}\leq m, ] thereby settling the simplest case of a conjecture of Bollob\'{a}s and the author. We give a simpler proof of their result.

Summary

We haven't generated a summary for this paper yet.