Open Intent Discovery through Unsupervised Semantic Clustering and Dependency Parsing (2104.12114v2)
Abstract: Intent understanding plays an important role in dialog systems, and is typically formulated as a supervised learning problem. However, it is challenging and time-consuming to design the intents for a new domain from scratch, which usually requires a lot of manual effort of domain experts. This paper presents an unsupervised two-stage approach to discover intents and generate meaningful intent labels automatically from a collection of unlabeled utterances in a domain. In the first stage, we aim to generate a set of semantically coherent clusters where the utterances within each cluster convey the same intent. We obtain the utterance representation from various pre-trained sentence embeddings and present a metric of balanced score to determine the optimal number of clusters in K-means clustering for balanced datasets. In the second stage, the objective is to generate an intent label automatically for each cluster. We extract the ACTION-OBJECT pair from each utterance using a dependency parser and take the most frequent pair within each cluster, e.g., book-restaurant, as the generated intent label. We empirically show that the proposed unsupervised approach can generate meaningful intent labels automatically and achieve high precision and recall in utterance clustering and intent discovery.
- Pengfei Liu (191 papers)
- Youzhang Ning (1 paper)
- King Keung Wu (2 papers)
- Kun Li (193 papers)
- Helen Meng (204 papers)