Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automata-based Controller Synthesis for Stochastic Systems: A Game Framework via Approximate Probabilistic Relations (2104.11803v3)

Published 23 Apr 2021 in eess.SY and cs.SY

Abstract: In this work, we propose an abstraction and refinement methodology for the controller synthesis of discrete-time stochastic systems to enforce complex logical properties expressed by deterministic finite automata (a.k.a. DFA). Our proposed scheme is based on a notion of so-called $(\epsilon,\delta)$-approximate probabilistic relations, allowing one to quantify the similarity between stochastic systems modeled by discrete-time stochastic games and their corresponding finite abstractions. Leveraging this type of relations, the lower bound for the probability of satisfying the desired specifications can be well ensured by refining controllers synthesized over abstract systems to the original games. Moreover, we propose an algorithmic procedure to construct such a relation for a particular class of nonlinear stochastic systems with slope restrictions on the nonlinearity. The proposed methods are demonstrated on a quadrotor example, and the results indicate that the desired lower bound for the probability of satisfaction is guaranteed.

Citations (12)

Summary

We haven't generated a summary for this paper yet.