Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniformly accurate low regularity integrators for the Klein--Gordon equation from the classical to non-relativistic limit regime (2104.11672v2)

Published 23 Apr 2021 in math.NA and cs.NA

Abstract: We propose a novel class of uniformly accurate integrators for the Klein--Gordon equation which capture classical $c=1$ as well as highly-oscillatory non-relativistic regimes $c\gg1$ and, at the same time, allow for low regularity approximations. In particular, the schemes converge with order $\tau$ and $\tau2$, respectively, under lower regularity assumptions than classical schemes, such as splitting or exponential integrator methods, require. The new schemes in addition preserve the nonlinear Schr\"odinger (NLS) limit on the discrete level. More precisely, we will design our schemes in such a way that in the limit $c\to \infty$ they converge to a recently introduced class of low regularity integrators for NLS.

Citations (6)

Summary

We haven't generated a summary for this paper yet.