Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CapillaryNet: An Automated System to Quantify Skin Capillary Density and Red Blood Cell Velocity from Handheld Vital Microscopy (2104.11574v4)

Published 23 Apr 2021 in eess.IV, cs.CV, and cs.LG

Abstract: Capillaries are the smallest vessels in the body responsible for delivering oxygen and nutrients to surrounding cells. Various life-threatening diseases are known to alter the density of healthy capillaries and the flow velocity of erythrocytes within the capillaries. In previous studies, capillary density and flow velocity were manually assessed by trained specialists. However, manual analysis of a standard 20-second microvascular video requires 20 minutes on average and necessitates extensive training. Thus, manual analysis has been reported to hinder the application of microvascular microscopy in a clinical environment. To address this problem, this paper presents a fully automated state-of-the-art system to quantify skin nutritive capillary density and red blood cell velocity captured by handheld-based microscopy videos. The proposed method combines the speed of traditional computer vision algorithms with the accuracy of convolutional neural networks to enable clinical capillary analysis. The results show that the proposed system fully automates capillary detection with an accuracy exceeding that of trained analysts and measures several novel microvascular parameters that had eluded quantification thus far, namely, capillary hematocrit and intracapillary flow velocity heterogeneity. The proposed end-to-end system, named CapillaryNet, can detect capillaries at $\sim$0.9 seconds per frame with $\sim$93\% accuracy. The system is currently being used as a clinical research product in a larger e-health application to analyse capillary data captured from patients suffering from COVID-19, pancreatitis, and acute heart diseases. CapillaryNet narrows the gap between the analysis of microcirculation images in a clinical environment and state-of-the-art systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.