Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing small BERTs trained for German NER (2104.11559v2)

Published 23 Apr 2021 in cs.CL and cs.AI

Abstract: Currently, the most widespread neural network architecture for training LLMs is the so called BERT which led to improvements in various NLP tasks. In general, the larger the number of parameters in a BERT model, the better the results obtained in these NLP tasks. Unfortunately, the memory consumption and the training duration drastically increases with the size of these models. In this article, we investigate various training techniques of smaller BERT models: We combine different methods from other BERT variants like ALBERT, RoBERTa, and relative positional encoding. In addition, we propose two new fine-tuning modifications leading to better performance: Class-Start-End tagging and a modified form of Linear Chain Conditional Random Fields. Furthermore, we introduce Whole-Word Attention which reduces BERTs memory usage and leads to a small increase in performance compared to classical Multi-Head-Attention. We evaluate these techniques on five public German Named Entity Recognition (NER) tasks of which two are introduced by this article.

Citations (3)

Summary

We haven't generated a summary for this paper yet.