Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connecting Hamilton--Jacobi partial differential equations with maximum a posteriori and posterior mean estimators for some non-convex priors (2104.11285v1)

Published 22 Apr 2021 in math.OC and cs.CV

Abstract: Many imaging problems can be formulated as inverse problems expressed as finite-dimensional optimization problems. These optimization problems generally consist of minimizing the sum of a data fidelity and regularization terms. In [23,26], connections between these optimization problems and (multi-time) Hamilton--Jacobi partial differential equations have been proposed under the convexity assumptions of both the data fidelity and regularization terms. In particular, under these convexity assumptions, some representation formulas for a minimizer can be obtained. From a Bayesian perspective, such a minimizer can be seen as a maximum a posteriori estimator. In this chapter, we consider a certain class of non-convex regularizations and show that similar representation formulas for the minimizer can also be obtained. This is achieved by leveraging min-plus algebra techniques that have been originally developed for solving certain Hamilton--Jacobi partial differential equations arising in optimal control. Note that connections between viscous Hamilton--Jacobi partial differential equations and Bayesian posterior mean estimators with Gaussian data fidelity terms and log-concave priors have been highlighted in [25]. We also present similar results for certain Bayesian posterior mean estimators with Gaussian data fidelity and certain non-log-concave priors using an analogue of min-plus algebra techniques.

Citations (2)

Summary

We haven't generated a summary for this paper yet.