Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noise-Robust Deep Spiking Neural Networks with Temporal Information (2104.11169v1)

Published 22 Apr 2021 in cs.NE, cs.AI, and cs.LG

Abstract: Spiking neural networks (SNNs) have emerged as energy-efficient neural networks with temporal information. SNNs have shown a superior efficiency on neuromorphic devices, but the devices are susceptible to noise, which hinders them from being applied in real-world applications. Several studies have increased noise robustness, but most of them considered neither deep SNNs nor temporal information. In this paper, we investigate the effect of noise on deep SNNs with various neural coding methods and present a noise-robust deep SNN with temporal information. With the proposed methods, we have achieved a deep SNN that is efficient and robust to spike deletion and jitter.

Citations (12)

Summary

We haven't generated a summary for this paper yet.