Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonuniqueness in law for stochastic hypodissipative Navier-Stokes equations (2104.10798v2)

Published 21 Apr 2021 in math.PR

Abstract: We study the incompressible hypodissipative Navier-Stokes equations with dissipation exponent $0 < \alpha < \frac{1}{2}$ on the three-dimensional torus perturbed by an additive Wiener noise term and prove the existence of an initial condition for which distinct probabilistic weak solutions exist. To this end, we employ convex integration methods to construct a pathwise probabilistically strong solution, which violates a pathwise energy inequality up to a suitable stopping time. This paper seems to be the first in which such solutions are constructed via Beltrami waves instead of intermittent jets or flows in a stochastic setting.

Summary

We haven't generated a summary for this paper yet.