Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network diffusion capacity unveiled by dynamical paths (2104.10736v1)

Published 21 Apr 2021 in physics.data-an

Abstract: Improving the understanding of diffusive processes in networks with complex topologies is one of the main challenges of today's complexity science. Each network possesses an intrinsic diffusive potential that depends on its structural connectivity. However, the diffusion of a process depends not only on this topological potential but also on the dynamical process itself. Quantifying this potential will allow the design of more efficient systems in which it is necessary either to weaken or to enhance diffusion. Here we introduce a measure, the {\em diffusion capacity}, that quantifies, through the concept of dynamical paths, the potential of an element of the system, and also, of the system itself, to propagate information. Among other examples, we study a heat diffusion model and SIR model to demonstrate the value of the proposed measure. We found, in the last case, that diffusion capacity can be used as a predictor of the evolution of the spreading process. In general, we show that the diffusion capacity provides an efficient tool to evaluate the performance of systems, and also, to identify and quantify structural modifications that could improve diffusion mechanisms.

Summary

We haven't generated a summary for this paper yet.