Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Interpretation of multi-label classification models using shapley values (2104.10505v1)

Published 21 Apr 2021 in cs.LG

Abstract: Multi-label classification is a type of classification task, it is used when there are two or more classes, and the data point we want to predict may belong to none of the classes or all of them at the same time. In the real world, many applications are actually multi-label involved, including information retrieval, multimedia content annotation, web mining, and so on. A game theory-based framework known as SHapley Additive exPlanations (SHAP) has been applied to explain various supervised learning models without being aware of the exact model. Herein, this work further extends the explanation of multi-label classification task by using the SHAP methodology. The experiment demonstrates a comprehensive comparision of different algorithms on well known multi-label datasets and shows the usefulness of the interpretation.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)