Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TREC Deep Learning Track: Reusable Test Collections in the Large Data Regime (2104.09399v1)

Published 19 Apr 2021 in cs.IR, cs.AI, and cs.LG

Abstract: The TREC Deep Learning (DL) Track studies ad hoc search in the large data regime, meaning that a large set of human-labeled training data is available. Results so far indicate that the best models with large data may be deep neural networks. This paper supports the reuse of the TREC DL test collections in three ways. First we describe the data sets in detail, documenting clearly and in one place some details that are otherwise scattered in track guidelines, overview papers and in our associated MS MARCO leaderboard pages. We intend this description to make it easy for newcomers to use the TREC DL data. Second, because there is some risk of iteration and selection bias when reusing a data set, we describe the best practices for writing a paper using TREC DL data, without overfitting. We provide some illustrative analysis. Finally we address a number of issues around the TREC DL data, including an analysis of reusability.

Citations (43)

Summary

We haven't generated a summary for this paper yet.