Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Metric Optimization using Generative Adversarial Networks for Near-End Speech Intelligibility Enhancement (2104.08499v2)

Published 17 Apr 2021 in eess.AS and cs.SD

Abstract: The intelligibility of speech severely degrades in the presence of environmental noise and reverberation. In this paper, we propose a novel deep learning based system for modifying the speech signal to increase its intelligibility under the equal-power constraint, i.e., signal power before and after modification must be the same. To achieve this, we use generative adversarial networks (GANs) to obtain time-frequency dependent amplification factors, which are then applied to the input raw speech to reallocate the speech energy. Instead of optimizing only a single, simple metric, we train a deep neural network (DNN) model to simultaneously optimize multiple advanced speech metrics, including both intelligibility- and quality-related ones, which results in notable improvements in performance and robustness. Our system can not only work in non-realtime mode for offline audio playback but also support practical real-time speech applications. Experimental results using both objective measurements and subjective listening tests indicate that the proposed system significantly outperforms state-ofthe-art baseline systems under various noisy and reverberant listening conditions.

Citations (9)

Summary

We haven't generated a summary for this paper yet.