Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Keyword Spotting by capturing long-range interactions with Temporal Lambda Networks (2104.08086v2)

Published 16 Apr 2021 in eess.AS

Abstract: Models based on attention mechanisms have shown unprecedented speech recognition performance. However, they are computationally expensive and unnecessarily complex for keyword spotting, a task targeted to small-footprint devices. This work explores the application of Lambda networks, an alternative framework for capturing long-range interactions without attention, for the keyword spotting task. We propose a novel \textit{ResNet}-based model by swapping the residual blocks by temporal Lambda layers. Furthermore, the proposed architecture is built upon uni-dimensional temporal convolutions that further reduce its complexity. The presented model does not only reach state-of-the-art accuracies on the Google Speech Commands dataset, but it is 85% and 65% lighter than its Transformer-based (KWT) and convolutional (Res15) counterparts while being up to 100 times faster. To the best of our knowledge, this is the first attempt to explore the Lambda framework within the speech domain and therefore, we unravel further research of new interfaces based on this architecture.

Citations (3)

Summary

We haven't generated a summary for this paper yet.