Zero-cycle groups on algebraic varieties (2104.07968v2)
Abstract: We compare various groups of 0-cycles on quasi-projective varieties over a field. As applications, we show that for certain singular projective varieties, the Levine-Weibel Chow group of 0-cycles coincides with the corresponding Friedlander-Voevodsky motivic cohomology. We also show that over an algebraically closed field of positive characteristic, the Chow group of 0-cycles with modulus on a smooth projective variety with respect to a reduced divisor coincides with the Suslin homology of the complement of the divisor. We prove several generalizations of the finiteness theorem of Saito and Sato for the Chow group of 0-cycles over $p$-adic fields. We also use these results to deduce a torsion theorem for Suslin homology which extends a result of Bloch to open varieties.