Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison of Grammatical Error Correction Using Back-Translation Models (2104.07848v1)

Published 16 Apr 2021 in cs.CL

Abstract: Grammatical error correction (GEC) suffers from a lack of sufficient parallel data. Therefore, GEC studies have developed various methods to generate pseudo data, which comprise pairs of grammatical and artificially produced ungrammatical sentences. Currently, a mainstream approach to generate pseudo data is back-translation (BT). Most previous GEC studies using BT have employed the same architecture for both GEC and BT models. However, GEC models have different correction tendencies depending on their architectures. Thus, in this study, we compare the correction tendencies of the GEC models trained on pseudo data generated by different BT models, namely, Transformer, CNN, and LSTM. The results confirm that the correction tendencies for each error type are different for every BT model. Additionally, we examine the correction tendencies when using a combination of pseudo data generated by different BT models. As a result, we find that the combination of different BT models improves or interpolates the F_0.5 scores of each error type compared with that of single BT models with different seeds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Aomi Koyama (1 paper)
  2. Kengo Hotate (2 papers)
  3. Masahiro Kaneko (46 papers)
  4. Mamoru Komachi (40 papers)
Citations (9)