Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequence tagging for biomedical extractive question answering (2104.07535v2)

Published 15 Apr 2021 in cs.CL

Abstract: Current studies in extractive question answering (EQA) have modeled the single-span extraction setting, where a single answer span is a label to predict for a given question-passage pair. This setting is natural for general domain EQA as the majority of the questions in the general domain can be answered with a single span. Following general domain EQA models, current biomedical EQA (BioEQA) models utilize the single-span extraction setting with post-processing steps. In this article, we investigate the question distribution across the general and biomedical domains and discover biomedical questions are more likely to require list-type answers (multiple answers) than factoid-type answers (single answer). This necessitates the models capable of producing multiple answers for a question. Based on this preliminary study, we propose a sequence tagging approach for BioEQA, which is a multi-span extraction setting. Our approach directly tackles questions with a variable number of phrases as their answer and can learn to decide the number of answers for a question from training data. Our experimental results on the BioASQ 7b and 8b list-type questions outperformed the best-performing existing models without requiring post-processing steps. Source codes and resources are freely available for download at https://github.com/dmis-lab/SeqTagQA

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wonjin Yoon (13 papers)
  2. Richard Jackson (4 papers)
  3. Aron Lagerberg (3 papers)
  4. Jaewoo Kang (83 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com