Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embedding Adaptation is Still Needed for Few-Shot Learning (2104.07255v1)

Published 15 Apr 2021 in cs.LG and cs.CV

Abstract: Constructing new and more challenging tasksets is a fruitful methodology to analyse and understand few-shot classification methods. Unfortunately, existing approaches to building those tasksets are somewhat unsatisfactory: they either assume train and test task distributions to be identical -- which leads to overly optimistic evaluations -- or take a "worst-case" philosophy -- which typically requires additional human labor such as obtaining semantic class relationships. We propose ATG, a principled clustering method to defining train and test tasksets without additional human knowledge. ATG models train and test task distributions while requiring them to share a predefined amount of information. We empirically demonstrate the effectiveness of ATG in generating tasksets that are easier, in-between, or harder than existing benchmarks, including those that rely on semantic information. Finally, we leverage our generated tasksets to shed a new light on few-shot classification: gradient-based methods -- previously believed to underperform -- can outperform metric-based ones when transfer is most challenging.

Citations (7)

Summary

We haven't generated a summary for this paper yet.