Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Approach to Curiosity and Explainable Reinforcement Learning via Interpretable Sub-Goals (2104.06630v2)

Published 14 Apr 2021 in cs.LG

Abstract: Two key challenges within Reinforcement Learning involve improving (a) agent learning within environments with sparse extrinsic rewards and (b) the explainability of agent actions. We describe a curious subgoal focused agent to address both these challenges. We use a novel method for curiosity produced from a Generative Adversarial Network (GAN) based model of environment transitions that is robust to stochastic environment transitions. Additionally, we use a subgoal generating network to guide navigation. The explainability of the agent's behavior is increased by decomposing complex tasks into a sequence of interpretable subgoals that do not require any manual design. We show that this method also enables the agent to solve challenging procedurally-generated tasks that contain stochastic transitions above other state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.